
 1

Hiding Malicious Content in PDF Documents

Dan-Sabin POPESCU

Information Technology Security

The Military Technical Academy

George Coşbuc 81-83, Bucharest 5, 050141, ROMANIA

sabin.popescu@yahoo.com

http://www.mta.ro

Abstract: This paper is a proof-of-concept demonstration for a specific digital signatures vulnerability
that shows the ineffectiveness of the WYSIWYS (What You See Is What You Sign) concept. The
algorithm is fairly simple: the attacker generates a polymorphic file that has two different types of
content (text, as a PDF document for example, and image: TIFF – two of the most widely used file
formats). When the victim signs the dual content file, he/ she only sees a PDF document and is
unaware of the hidden content inside the file. After obtaining the legally signed document from the
victim, the attacker simply has to change the extension to the other file format. This will not invalidate
the digital signature, as no bits were altered. The destructive potential of the attack is considerable,
as the Portable Document Format (PDF) is widely used in e-government and in e-business contexts.

Key-Words: Digital signatures, vulnerabilities, PDF

1 Introduction

The digital signature, as defined by Diffie
and Hellman [1], is a widespread application
of asymmetric key cryptography, whose
purpose is to ensure the integrity of the
signed documents and to guarantee the
identity of the signer. In many countries,
digital signatures can legally substitute
handwritten signatures [2] and are widely
used in e-business and e-government
activities.
To digitally sign a document, one must first
generate a hash of the original file and
encrypt this digest using the private key of
an asymmetric algorithm (RSA being one of
the most popular). Any tampering will
automatically invalidate the signature, as
the hash value calculated during decryption
will not match the original.
However, digital signatures aren’t perfect,
as they allow the content of a file to be
displayed dynamically [3], depending on
various instructions included in the file (PDF
files can incorporate JavaScript sequences,

for example). This function is useful if you
would like to have a quotation document
updated automatically with the latest
exchange rates.
Dynamic content does not invalidate a
digital signature and gives attackers a
whole new area to explore (and to exploit).
To get around this, the WYSIWYS (What
You See Is What You Sign) concept was
introduced. In short, because the binary and
hex interpretations of a document are
incomprehensible to most people, the file is
converted into a static image (like BMP or
TIFF) before being signed.
By exploiting the file structures of various
text and image formats, an attacker can
obtain a legally signed document, but
whose content differs from the one that the
signer originally approved.

2 Preliminary Info

Thus, what the user sees on the screen is
actually not what he signs. As stated above,
the mechanism is straight forward: the

 2

attacker generates a dual file that includes
both a PDF document and a TIFF image.
When the victim signs the polymorphic file,
he/ she only sees a PDF file and is unaware
of the hidden content. After obtaining the
legally signed document from the victim, the
attacker simply has to change the extension
to the other file format. This will not
invalidate the digital signature, as no bits of
the actual file were altered.
This method is known as the Dali Attack,
named after the famous painter [4], [5]. The
first demonstration of the attack was based
on BMP and HTML files. Assume the
following scenario: the CEO of a company
wants to grant 100,000 Euros to the
financial department, so he asks the CFO to
write up a document. To ensure there are
no hidden macros or scripts, the CEO
demands a scanned BMP copy of the
document. The CFO, who is the attacker in
this scenario, wants to gain more funds, so
he inserts a hidden HTML code inside the
image file. This code is actually the same
document, where the 100,000 Euros
amount is changed to 1 million Euros.
When the CEO digitally signs the
Grant.bmp file, he is unaware of the hidden
code behind the document. His smartcard
device or software-based cryptography
application generates the Grant.bmp.p7m
file (PKCS#7). The file then goes back to
the CFO, who changes the extension to
Grant.htm.p7m. Because the digital
signature verification is done solely by
comparing the bits that make up the PKCS
container (of which none references the
filename or extension), the signature will still
be valid.
If one would open the file with an image
viewer, one would still get the original
document, with the approved 100,000
Euros amount. However, because the
extension was changed to HTML, the
operating system will automatically use a
web browser to open the file, thus
displaying the modified text.
The biggest problem of this kind of attack is

the use of HTML files, that aren’t usually
encountered in a typical corporate
document workflow. Plus, an HTML text file
that is over 2 MB will surely raise
suspicions.
The Dali Attack can be improved by using
TIFF and PDF files that have a very flexible
structure. For example, TIFF files allow you
to store image parameters (resolution,
dimensions etc.) anywhere inside the file.
On the other hand, PDF documents are
read from the end of the file towards the
beginning and the header can be placed
anywhere within the first 1,024 bytes of the
file.
If executed correctly, the attacker can
generate an almost undetectable
polymorphic file, which can be used for
fraud in practically any environment that
relies on PDF for the internal document
workflow.
Before describing the attack in detail, we
must first take a look at the basics of the
PDF and TIFF file structures.

2.1 The PDF File Structure

PDF is a platform independent standard
developed by Adobe Systems for electronic
documents exchange. The main sections of
the PDF format are [7]:

• Header – identifies the PDF version
(for compatibility reasons); it is
usually defined as %PDF-1.X[EOL],
where X ∈{0, 7 > the latest version
of Acrobat, 9.0}, and EOL is the
End-of-Line marker, usually CR
(Carriage Return, 0D in hex), LF
(Line Feed, 0A in hex) or both. It
can occur anywhere within the first
1,024 bytes of the file;

• Body – the visual components of
the file (text, images, fonts, pages
layout, objects etc.);

• Xref (Cross-reference Table) –
pointers and other information
about the various embedded
objects; it allows Adobe Reader to

 3

find objects anywhere within
document, by searching for the
corresponding offset. Thus, the
PDF viewer doesn’t have to scan
the whole file to find an object.

• Trailer – specifies the location of
the Xref Table and of other objects.
The PDF format is designed to be
read from the end, in order to
quickly find the Xref Table. The last
line of the document must contain
the %%EOF marker (End-of-File).

Figure 1 below illustrates the basic file
structure of a PDF file.

Figure 1: Outline of the PDF format

structure

2.2 The TIFF File Structure

TIFF, a format widely used for manipulating
high resolution images, was developed by
Aldus, a company acquired by Adobe
Systems in 1994. TIFF has a very flexible
structure, which envelops all the image data
in structures called IFDs (Image File
Directories). IFDs are two-dimensional
arrays that specify image resolution,
compression, the total number of colours
used etc., as well as the pointers that define
the offsets of these parameters.
Because IFDs can be placed anywhere
within the TIFF file, the document must
contain a pointer to the first IFD. This
pointer is placed inside the eight byte
header of the TIFF file.
The first two bytes identify the TIFF format
and byte order (4949 [hex] or “II” [ASCII] for
little-endian and 4D4D [hex] or “MM” [ASCII]
for big-endian). The next two bytes are the
so-called “magic number” (002A [hex] or 42
[decimal]), also used to identify the TIFF
format. The last four bytes of the header are
the offset (starting address) of the first IFD.
The TIFF specifications [6] do not specify
constraints in regard to this offset, which
means it can even be placed at the end of
the file. This is a huge advantage for the
attacker – he has the possibility to insert an
arbitrary code (in this case a PDF
document) immediately after the header.
An IFD structure starts with a two byte
sequence that specifies the total number of
directories (components). The last four
bytes define the offset of the next IFD (if it
exists). In between, there are multiple 12-
byte one-dimensional arrays that define all
of the image parameters and are structured
as follows:

• Bytes 0-1: Tag – the identifier;

• Bytes 2-3: Type (Byte/0001h,
unsigned int, 8b; ASCII/0002h,
7b+NUL; Short/0003h, unsigned int,
16b; Long/0004h, unsigned int, 32b;
Rational/0005h, 2xLong); TIFF
Revision 6.0 includes seven new

 4

types (signed versions of the above
mentioned types, plus Float/0011h
and Double/0012h);

• Bytes 4-7: Count (Length) – the
total number of values;

• Bytes 8-11: Value/ Offset –
specifies the address (byte-wise)
where the value of the field is
stored at; the field contains the
actual value if and only if it is
smaller than 4 bytes.

Black and white images can be defined
using just the following IFD subfields:

• PhotometricInterpretation/0106h;

• Compression/0103h;

• ImageLength/0101h;

• ImageWidth/0100h;

• ResolutionUnit/0128h;

• XResolution/011Ah;

• YResolution/011Bh;

• RowsPerStrip*/0116h;

• StripOffsets*/0111h;

• StripByteCounts*/0117h;

* The TIFF image is split into strips, which
make it easier to edit the image and also
optimizes the input/ output buffer. Thus,
similarly to PDF files, the image viewer
does not have to scan the whole file to find
a specific parameter.

Greyscale images have an additional field
called BitsPerSample/0102h, while full RGB
(Red, Green, Blue) images also use the
SamplesPerPixel/0115h field.

The general structure of an IFD and that of
a TIFF file are described in Figures 2 and 3.

Note:
Fields like Date/ Time, Software, Artist,
ICCProfile are optional and most image

viewers and editors are designed to ignore
them if the data is non-interpretable.

Figure 2: The header and first IDF of a TIFF file Figure 3: The hex outline of a TIFF file

 5

3 Embedding the Malicious Content

The goal of the attack is to obtain a dual
PDF/ TIFF file that shows the two different
types of content by changing the file
extension. The flexible structure of the TIFF
format allows the insertion of arbitrary code
without the risk of corrupting the file.
However, when any additional number of
bytes are added, to pointers are shifted, and
therefore it is necessary to manually adjust
the offsets of the header and of the IFD
components. PDF is also a good choice for
this type of attack, because the header can
be placed anywhere within the first 1,024
bytes, which means that it can be preceded
by an eight byte sequence that is actually a
TIFF header.
We will consider the scenario described in
Chapter 2: the CFO of a company wants to
gain access to funds of 1 million Euros,
rather than the approved 100,000 Euros.
The first step is to generate the two files –
Contract.pdf and Contract.tif (containing the
modified amount). Then, we copy the whole
content of the PDF file after the first eight
bytes of the TIFF image. At the end of the
new polymorphic file, we add the trailer (last
few bytes) of the PDF document, in order to
preserve compatibility with Adobe Reader.
All the operations can be done using any
hex editor. I opted for Hex Workshop 4.2. At
this point, the polymorphic file can be
opened by Adobe Reader, but image
viewers return an error because the offsets
are wrong.
Next, we must modify the header, which
contains the offset of the first IFD,
respectively the last four bytes of the
4949.2A00.0800.0000 sequence. In the
original file, the 8h address corresponds to
the 1700.FE00.0400.0100 sequence. After
inserting the PDF file, all values are shifted
with the byte-value equivalent of the PDF
document (6,009 bytes). To determine the
new IFD position, we must add this value to
the original position. In hex, 6,009 is 1779h.
Thus, 1779h + 0008h = 1781h.

Another method to determine the new offset
(which is the method used in the video file
on the CD submitted with this paper), is to
search for the 1700.FE00.0400.0100
sequence in the polymorphic file – which
will point to the 1781h location, as below:

Figure 4: The new location of the IFD

Now, all we have to do is change the
header to 4949.2A00.8117.0000 (1781h
becomes 8171h in big-endian).
The same process has to be repeated for
most of the IFD parameters. To identify
them more easily, I used an application
called AsTiffTagViewer 2.0.
For the polymorphic file to be nearly
identical to the original TIFF file, the
following fields must be changed:
BitsPerSample, XResolution, YResolution
and StripOffsets. For a more convincing
result, one should also adjust the other
readable fields (username, the software
used to generate the file, the date and time
of creation etc.).
Table 1 on the next page illustrates all of
the changes that must be made to the
polymorphic file.
After this, the finished polymorphic file
Contract.pdf.tif, which will be renamed
Contract.pdf to fool the victim, can be
opened without error by Adobe Reader or
Foxit Reader. Furthermore, when analyzed
by the Preflight tool in Acrobat Professional,
the polymorphic file appears to be a
standard PDF file, with no syntax errors.
Accessed with any image viewer, the
polymorphic file will display the malicious
content. The only tool that detects any
irregularities with the file is Adobe
Photoshop, which simply states the image
has data that cannot be read.

 6

 7

After this, the attacker sends the
polymorphic file to his victim, who signs it
using a smartcard device or a software
solution capable of handling digital
certificates.
The resulting Contract.pdf.pkcs7 file will
pass signature verification, because all the
malicious modifications were made before
signing. When decoded with signature
verification software, the user will view the
original PDF document, with the 100,000
Euros amount.
To complete the attack, the attacker must

change the filename extension from
Contract.pdf.pcks7 to Contract.tif.pkcs7.
The digital signature verification process will
once again pass (see Figure 5 below),
because the bits that make up the PKCS#7
message contain no information about the
extension of the file.
Any operating system will then interpret the
polymorphic file by its new extension (TIFF)
and open it with an image viewer, displaying
the modified 1 million Euros amount.

This type of attack also works for password
protected PDF documents (RC4 or AES),
as well as PDF/A documents (used for long
term archiving), PDF/E documents (used for
engineering workflows) and PDF/X
documents (used in the desktop publishing
and prepress industry).
It is also worth mentioning that the Dali
Attack is quite difficult to detect because it
does not cause direct damage to the victim
(like credit card fraud for example). The
attacker gains an advantage that he can
exploit sometime in the future.

4 Methods of Detection

I have identified seven different solutions
(freeware or commercial) that could help in
identifying a supposed polymorphic file.
Some methods are for the tech savvy
persons that are willing to open the
suspicious file with a hex editor (a direct
method of identifying any tampering) or with
Adobe Photoshop (that will detect any
errors in the TIFF format).
In the case of PDF/A files, the Preflight tool
in Adobe Acrobat Professional will detect

Figure 5: Signature verification of the polymorphic file (renamed to Contract.tif.pkcs7)

 8

syntax errors if the file is put through the
PDF/A-1b standard compliancy test. This
standard states that the PDF header must
begin with %PDF-1.X, and cannot start with
an arbitrary code.
On the other hand, if a user already owns
Acrobat Professional, then he has a sure
method of disarming any kind of Dali Attack,
because the proprietary Adobe signature
software rewrites the whole document,
eliminating any prior modifications [8].
Another complex method would be to
include the filename or corresponding MIME
ContentType in the PKCS#7 container.
Thus, the signature verification software
would detect when the attacker tries to
change the extension.
One could also develop a heuristic
application that could search for patterns
specific to the Dali Attack. Any
inexperienced user could then detect an
attack.
However, because developing such an
application is fairly complex (requiring
implementing CMS and PKCS#7 libraries in
IDEs like .NET), I have developed a simple
batch program that can detect the attack
and then display the TIFF image hidden

inside a PDF document.
This batch is intended to be run before
signing a suspicious file. The underlying
principle is simple: using a tool from the
ImageMagick 6.6 suite, we search for TIFF
image specific parameters inside a PDF
document (like dimensions, resolution, color
depth etc.). If they are present, then the file
might be polymorphic. The batch then
duplicates the file, renames it to TIFF and
opens the default image viewer. The
Identify tool from ImageMagick can also
detect PDF specific fields (like format:
application/pdf and pdf:Producer:Acrobat
Distiller 8.1.0), meaning it can also be used
to detect images that have a PDF document
hidden inside.
The batch file (compiled for both x32 and
x64 platforms) is included on the CD
submitted with this paper.
Figure 6 below shows the output of the
batch program, that has detected TIFF
parameters inside a PDF file.

Figure 6: The output of the batch program designed to detect polymorphic files

 9

5 Conclusions

This paper and the video attached to it
describe in detail a new digital signatures
exploit that allows an attacker to trick his
victim into signing a document he/ she
did not approve. The attack is not based
on embedding dynamic content (like
macros in Microsoft Word) or accessing
external components (such as fonts in a
PDF file), but rather on creating a
polymorphic file with two types of content
– TIFF and PDF – one being the original
document and the other, the modified
malicious copy. Thus, the victim is
unaware of signing another document
hidden behind the one displayed on
screen. The destructive potential of the
attack is considerable, as both PDF and
TIFF are widely used in e-government
activities, respectively in the corporate
environment.
I have also listed the main methods of
detecting or disarming this type of attack,
including an application I have developed
myself.

References:

[1] W. Diffie, M. Hellman, New Directions
in Cryptography, IEEE Transactions on
Information Theory, 1976.
[2] European Union, Community
Framework for Electronic Signatures,
Directive 1999/93/EC of the European
Parliament and of the Council, 1999.
[3] A. Alsaid, C.J. Mitchell, Dynamic
Content Attacks on Digital Signatures,
Emerald Group Publishing, 2005.
[4] F. Buccafurri, Digital Signature Trust
Vulnerability: A New Attack on Digital
Signatures, ISSA Journal, 2008/10.
[5] F. Buccafurri, Fortifying the Dali Attack
on Digital Signature, Security of
Information and Networks, 2009.
[6] ISO Standard 32000-1, Document
management – Portable Document
Format 1.7, Adobe Systems, 2008/01/07.
[7] TIFF Revision 6.0, Adobe Systems,
1992.
[8] Digital Signatures in the PDF
Language, Developer Technical Note,
Adobe Systems, 2006

